Formulas for Integrals of Products of Associated Legendre or Laguerre Functions
نویسندگان
چکیده
منابع مشابه
Composite Laguerre-Legendre PseudospectralMethod for Exterior Problems
In this paper, we propose a composite Laguerre-Legendre pseudospectral method for exterior problems with a square obstacle. Some results on the composite Laguerre-Legendre interpolation, which is a set of piecewise mixed interpolations coupled with domain decomposition, are established. As examples of applications, the composite pseudospectral schemes are provided for two model problems. The co...
متن کاملIntegrals of Products of Hermite Functions
We compute the integrals of products of Hermite functions using the generating functions. The precise asymptotics of products of 4 Hermite functions are presented below. This estimate is relevant for the corresponding cubic nonlinear equation.
متن کاملOn Parameter Differentiation for Integral Representations of Associated Legendre Functions
For integral representations of associated Legendre functions in terms of modified Bessel functions, we establish justification for differentiation under the integral sign with respect to parameters. With this justification, derivatives for associated Legendre functions of the first and second kind with respect to the degree are evaluated at odd-halfinteger degrees, for general complex-orders, ...
متن کاملGeneralizations and Specializations of Generating Functions for Jacobi, Gegenbauer, Chebyshev and Legendre Polynomials with Definite Integrals
In this paper we generalize and specialize generating functions for classical orthogonal polynomials, namely Jacobi, Gegenbauer, Chebyshev and Legendre polynomials. We derive a generalization of the generating function for Gegenbauer polynomials through extension a two element sequence of generating functions for Jacobi polynomials. Specializations of generating functions are accomplished throu...
متن کاملLaguerre and Composite Legendre-laguerre Dual-petrov-galerkin Methods for Third-order Equations
Dual-Petrov-Galerkin approximations to linear third-order equations and the Korteweg-de Vries equation on semi-infinite intervals are considered. It is shown that by choosing appropriate trial and test basis functions the Dual-Petrov-Galerkin method using Laguerre functions leads to strongly coercive linear systems which are easily invertible and enjoy optimal convergence rates. A novel multi-d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Computation
سال: 1963
ISSN: 0025-5718
DOI: 10.2307/2003738